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Under the Weather Team
(at the J. Erik Jonsson Center of the National Academy of Sciences, Quissett, Mass)
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“Whoever would study medicine aright 
must learn of the following subjects. 

First he must consider the effect of the 
seasons of the year and the differences 
between them. 

Secondly he must study the warm and cold 
winds, both those which are in common to 
every country and those peculiar to a 
particular locality. 

Lastly, the effect of water on the health 
must not be forgotten.”

Hippocrates

On Airs, Waters, and Places

(400 B.C.)
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• Weather fluctuations and seasonal-to-interannual climate variability 

influence many infectious diseases

• Observational and modeling studies must be interpreted cautiously

• The potential disease impacts of global climate change remain highly 

uncertain

• Climate change may affect the evolution and emergence of infectious

diseases

• There are potential pitfalls in extrapolating climate and disease

relationships from one spatial/temporal scale to another

• Recent technological advances will aid efforts to improve modeling of

infectious disease epidemiology

UNDER THE WEATHER  / KEY FINDINGS: 

LINKAGES BETWEEN CLIMATE AND INFECTIOUS DISEASES
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IPCC Fourth Assessment Report

Working Group II Report "Impacts, Adaptation and Vulnerability“

Chapter 8. Human Health
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Figure 8.1. Schematic diagram of pathways by which climate change affects health, and 
concurrent direct-acting and modifying (conditioning) influences of environmental, social and 
health-system factors.

IPCC Fourth Assessment Report
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IPCC Fourth Assessment Report

Figure 8.3 Direction and magnitude of change of selected health impacts of 
climate change (takes into account numbers of people at risk and potential 
adaptive capacity).

? influenza



Graduate School of Public Health                                
University of Pittsburgh

How does Al Gore deal with infectious
diseases in An Inconvenient Truth ?
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“ There are cities that were founded because they were just 
above the mosquito line. Nairobi is one. Harare is another. There 
are plenty of others. Now the mosquitoes with warming are 
climbing to the higher altitudes. There are a lot of vectors for
infectious diseases that are worrisome to us that are also 
expanding their ranges, not only mosquitoes but all of these 
others as well. 

And we’ve had 30 so called new diseases that have emerged just 
in the last quarter century. And a lot of them like SARS have 
caused tremendous problems. The resistant forms of 
tuberculosis. There are others. 

And there’s been a reemergence of some diseases that were once 
under control. The avian flu, of course, quite a serious matter as 
you know.  West Nile virus. It came to the eastern shore of 
Maryland in 1999. Two years later it was across the Mississippi.
And two years after that it had spread across the continent. 

But these are very troubling signs.” 

Al Gore

An Inconvenient Truth
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Recent assessments of the probable impact of global climate change 

on infectious diseases have been cautious and measured. This 
honestly reflects the scientific uncertainties involved. 

No apocalyptic pronouncements.

Q:  Why the uncertainty? 

A:  Epidemic diseases are dynamic, non-linear processes. 

Any robust assessment of the impact of climate change on epidemic 
infectious diseases must be evaluated using dynamical models. 

Word arguments and static arrow diagrams (“St. Sebastian 
diagrams”) are not persuasive.  

RECAP
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Infectious Disease Dynamics: Dengue and Influenza



Graduate School of Public Health                                
University of Pittsburgh

Associated with 
flooding

Cryptosporidiosis

Rift Valley Fever

Wet

Associated with arid 
conditions, dust 
storms

Meningococcal         
meningitis,

Coccidioidomycosis

Dry

Seasonal 
transmission pattern

InfluenzaCold

Primarily tropical 
distribution, seasonal 

transmission pattern

Dengue,

Malaria

Warm

EVIDENCEDISEASE FAVOREDENVIRONMENTAL 

FACTOR

Under the Weather 

Examples of Diseases Influenced by Environmental Conditions



Graduate School of Public Health                                
University of Pittsburgh

INFLUENZA DYNAMICS
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Influenza - Like - Illness
 USA  Physicans Surveillance Network 1997-2004

US CDC
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Viboud et al, PLoS Med (2006)

Seasonality of Influenza Varies with Latitude
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WHY IS INFLUENZA A WINTER DISEASE ?  SOME PLAUSIBLE MECHANISMS

Environment 
Low temperature and low relative humidity

Host immunity  
Physiologic change due to photo-period
Low vitamin D due to decreased sunshine

Crowding  & Contact 

School season crowding
More time indoors 
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Influenza Virus Transmission Is Dependent 

on Relative Humidity and Temperature

Anice C Lowen, Samira Mubareka, John Steel, and Peter Palese

Lowen et al, PLoS Pathogen 2007
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Arrangement of Infected and Exposed Guinea Pigs in Environmental Chamber

Lowen et al, PLoS Pathogen 2007

Virus = A/Panama/99; H3N2
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Results shown as N of 4 exposed animals per group that became infected 

Lowen et al, PLoS Pathogen 2007
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Viral shedding is increased in infected animals held at 5 degrees C.

Lowen et al, PLoS Pathogen 2007
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Conclusion from Lown et al:

ü Aerosol transmission of influenza is increased by low 
temperature and low relative humidity

ü Increased transmission at low temperatures is probably

caused by  increased viral shedding

ü Increased transmission at low relative humidity may be due to 
formation of bio-aerosol droplet nuclei 
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Q:   HOW MUCH SEASONAL CHANGE IN TRANSMISSIBILITY
IS NEEDED TO SEE TYPICAL SEASONAL OSCILLATIONS
OF  INFECTIOUS DISEASES ?

A: IT DEPENDS ON HOW SEASONAL CHANGES IN 
TRANSMISSIBILITY INTERACT (RESONATE) WITH OTHER
OSCILLATIONS INHERENT IN THE EPIDEMIC PROCESS
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S           I            R

Epidemic Systems Can Display  Intrinsic Oscillations  Without  Requiring Any 
Seasonal Effects on Transmissibility eg S-I-R-S systems

Dushoff et al PNAS 2004

dI / dt =   β I S / N   - I / D

dS / dt =   R / L  - β I S / N

N  =    Number in Total Population
S  =    Susceptible
I   =    Infected
R  =    Recovered = Immune  = N - S - I
D  =    Duration of Infection
L  =    Length of Immunity 
β =  Transmissibility
no births and deaths

0 1 2
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Intrinsic Period of oscillation approx =    P = 2 π √ D L / (Ro – 1)

D   = Duration of Infection
L    = Length of Immunity
Ro =  # secondary infections caused by a single infected person

0 1 2 0 1 2

D, L, 

Ro

S-I-R-S 

Different diseases may have different intrinsic oscillation 

frequencies. This intrinsic oscillation frequency need not be 

seasonal ( 1 year). 
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β is the transmissiblity parameter

dI / dt β x   ( I   x   S ) ≈

Dushoff et al PNAS 2004
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Dushoff et al PNAS 2004

What happens if we impose seasonality? That is, 
instead of a fixed β we allow β to vary sinusoidally
(seasonally) ?  

β(t) = βo (1 + β1 cos(2 π t) )

How does this exogenous “forcing” oscillation 
of transmissibility interact with the intrinsic 

S-I-R-S oscillation? 
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Let β oscillate sinusoidally by only +/- 4 %, and impose this on 

S-I-R-S systems with different intrinsic periods of oscillation  

Dushoff et al PNAS 2004
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Let β oscillate sinusoidally by only +/- 4 %, and impose this on 

S-I-R-S systems with different intrinsic periods of oscillation  

Peak / trough = 1.5
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Intrinsic SIRS period of oscillation = 0.59

Weak resonance w seasonality

Intrinsic SIRS period of oscillation = 0.94 yr

Strong resonance w seasonality

Dushoff et al PNAS 2004

Let β oscillate sinusoidally by only +/- 4 %, and impose this on 

S-I-R-S systems with different intrinsic periods of oscillation  

deterministic & stochastic versions

Peak / trough = 1.5

Peak / trough = 7
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Dushoff et al PNAS 2004

Fixed small seasonal β oscillation (4%)

Random combinations of D, L, Ro -> Various intrinsic oscillation values

Strong non-linear resonance of when intrinsic oscillation period = 1 = seasonal   
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Conclusion from Dushoff et al 

ü In a theoretical system, large annual oscillations in 
incidence may be driven by very small seasonal
changes in transmissibility

ü [  …. if there is resonance between the intrinsic 
oscillation period and seasonal oscillation in
transmissibility ]
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What about real world data on 

influenza seasonality? 
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Total ILI USA  Physicans Surveillance 

Network 1997-2004
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Influenza Isolates Typed ( USA )

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 37 73 109 145 181 217 253 289 325 361 397 433 469 505 541

N
um

be
r 

of
 is

ol
at

es

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

CDC Data, Reported on WHO Flu-Net



Graduate School of Public Health                                
University of Pittsburgh

0

200

400

600

800

1000

1200

1400

1600

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 5611997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Typed 
Isolates

=  A / H3

=  A / H1

=  B

Different influenza types predominate in different years 



Graduate School of Public Health                                
University of Pittsburgh

H3

0

200

400

600

800

1000

1200

1400

1600

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 5611997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Typed 
Isolates

=  A / H3



Graduate School of Public Health                                
University of Pittsburgh

H1

0

100

200

300

400

500

600

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 5611997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Typed 
Isolates

=  A / H1



Graduate School of Public Health                                
University of Pittsburgh

B

0

100

200

300

400

500

600

700

800

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 5611997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Typed 
Isolates

=  B



Graduate School of Public Health                                
University of Pittsburgh

0

200

400

600

800

1000

1200

1400

1600

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 5611997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Typed 
Isolates

=  A / H3

=  A / H1

Possible H1- H3 mutually inhibiting subtype interactions?



Graduate School of Public Health                                
University of Pittsburgh

What do we know about the transmissibility of 
Influenza   A/H3 vs A/H1 vs B

Do all three have the same, or different, endogenous
oscillation periods ? 

Do all three have the same, or different, seasonal β

transmissibility oscillation ?

Given that β H3 is sensitive to temperature and humidity 

(see guinea pig experiments). Does this explain H3 
seasonality?  Are β H1 and β B similarly sensitive to 

temperature  and humidity ?
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What do we know about influenza dynamics 
in avian populations?
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Prevalence of H3, H4, and H6 in Alberta Ducks
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Prevalence of H3, H4, and H6 in Alberta Ducks
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? Endogenous oscillations     ? Seasonal β transmissibility variations

? β H3 = β H4 = β H6
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DENGUE DYNAMICS

Analytic “top – down” data-driven model

Synthetic “bottom –up”  theoretical model

Derek Cummings, Ph.D.

Johns Hopkins Bloomberg School of Public Health
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Monthly DHF Incidence

Passive Surveillance

72 Provinces

1983-1996

Gathered by Thai Ministry of Public 

~850,000 cases

Analytic Model to Detect
Patterns in Dengue 

Hemmorhagic Fever  Incidence
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Dengue Virus

Family Flaviviridae

Mosquito-borne

Four antigenically distinct serotypes

Most important mosquito-vector is 
Aedes aegypti
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Log of DHF Incidence in Bangkok

1984 1986 1988 1990 1992 1994 1996
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Empiric Mode Decomposition

developed at NASA to study 

water waves. We found it 

useful to study epidemic 

waves
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Modal Decomposition of Time Series
Using the Empiric Mode Decomposition



Graduate School of Public Health                                
University of Pittsburgh

100 km from Bangkok
200 km from Bangkok

300 km from Bangkok

Schematic of the three year DHF Intrinsic Mode 

= Oscillations in Bangkok
= Oscillations in Provinces
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Traveling waves in the occurrence of dengue hemorrhagic fever in Thailand
DEREK A.T. CUMMINGS, RAFAEL A. IRIZARRY, NORDEN E. HUANG, TIMOTHY P. ENDY, 

ANANDA NISALAK, KUMNUAN UNGCHUSAK & DONALD S. BURKE

427: 344-7 (2004)
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= INTRINSIC OSCILLATION

= ENVIRONMENT RESPONSIVE 
OSCILLATION

= LOCAL AND CHANCE EFFECTS

FOR AN ANALYSIS OF THE EFFECTS OF SEASON AND WEATHER 

ON DHF, THE INTRINSIC TRAVELLING WAVE IS A CONFOUNDER 
THAT WILL OBSCURE ANY CAUSE AND EFFECT RELATIONSHIPS
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Dengue Dynamics 
Synthetic, bottom-up theoretical model

Antibody dependent enhancement of virus replication: Immunity to a

cross-reactive dengue type increases, rather than decreases,

viral growth, viral burden, and transmissibility upon infection with 

a second type 
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Theoretical Transmission Model
SIR model of dengue including four serotypes and enhancement 

of secondary infections by pre-existing immunity
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SIR model of dengue including four 
serotypes and enhancement of secondary 
infections by pre-existing immunity

β (t) = β0 (1 + β1 cos ( 2 π t ) )

β1 is varied from 0.0 to 0.1 

What happens when we impose 
seasonal forcing? 

β is the transmissiblity parameter
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β1
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β1
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β1
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β1
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β1
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β1
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β1
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β1
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β1
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β1
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β1

N/A
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In a system with substantial strain-strain 
interactions, as little as a 20% change in 
transmissibility (β) can give rise to altered 
dynamics
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EPIDEMICS CAN BE APPROACHED AS PARTIALLY DECOMPOSABLE 

SYSTEMS

EVERY EFFORT SHOULD BE MADE TO ISOLATE AND THEREBY 
UNDERSTAND THE COMOPONENT SUBSYSTEMS 

ANALYSES OF THE FORCING EFFECTS OF ENVIRONMENTAL 
FACTORS ( eg TEMPERATURE, HUMIDITY,RAINFALL)  WILL BE MORE 
ROBUST IF IRRELEVANT OR CONFOUNDING DYNAMIC COMPONENT 
SUBSYSTEMS ARE ELIMINATED OR CONTROLLED. 

SOME GENERAL REFLECTIONS ON EPIDEMIC ANALYES 
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CLIMATE CHANGE AND EPIDEMIC EMERGENCE

Global Warming            “Global Weirding”

Science base is lacking to explain KNOWN epidemic emergences

Influenza
Spatio-temporal dynamics in wild avian populations?
Interactions with intermediate hosts eg commercial poultry?
Type-Type interactions? Evolution? 

HIV
SIV dynamics in primate populations?
Interactions with human bushmeat hunters?

SARS

Spatio-temporal dynamics in wild bat populations?
Interactions with intermediate hosts eg civets?
Evolution? 
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CONCLUSION

2001 Recommendations are even more urgent today:

v Research on the linkages between climate and infectious diseases must

be strengthened

v Further development of disease transmission models is needed to assess

the risks posed by climatic and ecological changes

v Epidemiological surveillance programs should be strengthened

v Observational, experimental, and modeling activities are all highly

interdependent and must progress in a coordinated fashion

v Research on climate and infectious disease linkages inherently requires

interdisciplinary collaborations



END
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UNDER THE WEATHER / KEY FINDINGS: 

THE POTENTIAL FOR DISEASE EARLY WARNING SYSTEMS

• As our understanding of climate/disease linkages is strengthened, 

epidemic control strategies should aim towards complementing

“surveillance and response” with “prediction and prevention.”

• Disease early warning systems can not be based on climate forecasts

alone

• Development of early warning systems should involve active participation

of the system’s end users



Graduate School of Public Health                                
University of Pittsburgh

N
a
s
a
l 
W

a
s
h
 I

n
fl
u
e
n
z
a
 T

it
e
r

Day Post-inoculation

4 Infected (transmitting) GPs 4 Exposed (recipient) GPs

Lowen et al, PLoS Pathogen 2007

5 degree C.

35% RH



Graduate School of Public Health                                
University of Pittsburgh

Deaths (Global) from Potentially Vaccine 
Preventable Diseases

Deaths in the absence of immunization (millions) per year
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Deaths (Global) from Potentially Vaccine 
Preventable Diseases

Deaths in the absence of immunization (millions) per year

P
re

v
e

n
te

d
 %

100

0

S
m

a
l l

p
o

x

R
u

b
e

l l
a

P
o

li
o

*

D
ip

h
th

e
ri

a

P
e

rt
u

s
s

is

M
e

a
s

le
s

T
e

ta
n

u
s

H
e

p
B

T
u

b
e

rc
u

lo
s

is

‘EPI plus’ Target Diseases

D
ia

rr
h

e
a

 a
n

d
 

E
n

te
ri

c
 F

e
v

e
rs

A
c

u
te

 R
e

s
p

ir
a

to
ry

 
In

fe
c

ti
o

n
s

M
a

la
ri

a

H
IV

/S
T

D

5.0       .6  .3 1.0   2.0     2.7   1.2 .1.1    3.2         3.0        3.7    2.1        4.0  

*and lifetime disability

ERADICATED NEW VACCINES           NO VACCINE

Y
e

ll
o

w
 F

e
v

e
r

Newly
Emerging
Diseases

?

Re-
Emerging
Diseases

?



Graduate School of Public Health                                
University of Pittsburgh

Table 3. Quantitatively calibrated levels of confidence

Terminology Degree of confidence in being correct

Very High confidence At least 9 out of 10 chance of being correct

High confidence About 8 out of 10 chance

Medium confidence About 5 out of 10 chance

Low confidence About 2 out of 10 chance

Very Low confidence Less than 1 out of 10 chance
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Under the Weather
Climate, Ecosystems, and Infectious Diseases

Board on Atmospheric Sciences and Climate, 
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UNDER THE WEATHER / RECOMMENDATIONS

FOR FUTURE RESEARCH AND SURVEILLANCE

v Research on the linkages between climate and infectious diseases must

be strengthened

“In most cases, these linkages are poorly understood and research 

on the causal relationships is in its infancy”

v Further development of disease transmission models is needed to assess

the risks posed by climatic and ecological changes

v Epidemiological surveillance programs should be strengthened

“The lack of high-quality epidemiological data for most diseases is a

serious obstacle …”

v Observational, experimental, and modeling activities are all highly

interdependent and must progress in a coordinated fashion

v Research on climate and infectious disease linkages inherently requires

interdisciplinary collaborations
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